B. Sc. B.Ed. SEMESTER I EXAMINATION 2019

Subject: Physics

CC 1 (Mathematical Physics - I)

FULL MARKS: 50

TIME ALLOWED: 2 HOURS

Answer any **Ten** (10) questions

- **1.** (i) Prove that if $y^3 3ax^2 + x^3 = 0$ then $\frac{d^2y}{dx^2} + \frac{2a^2x^2}{y^5} = 0$ (2 marks)
 - (ii) Find $\frac{dz}{dt}$ using chain rule if $z = xy^2 + x^2y$, $x = at^2$, y = 2at (3 marks)

2.(i) State Taylor's theorem in two variables. (2 marks)

- (ii) If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$, then find the value of $\int \vec{F} \cdot d\vec{r}$ along a curve $y = x^3$ in the xy plane from (1, 1) to (2, 8). (3 marks)
- **3.** State and prove Gauss' Divergence theorem. (5 marks)

4. (i) Explain the meaning of $\nabla |\vec{r}|$ where \vec{r} is the position vector. (2 marks) (ii) Show that $\nabla^2(\frac{x}{r^3}) = 0.$ (3 marks)

5. (i) For three vectors \vec{a} , \vec{b} and \vec{c} prove that $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$ (3 marks)

(ii) Compute the norm of
$$Y = \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$
 (2 marks)

6. (i) If $\Phi(x, y, z) = xy^2 z$ and $\vec{A} = xzi - xy^2 j + yz^2 k$ then find $\frac{\partial^3}{\partial x^2 \partial z} (\Phi \vec{A})$ at (2,0,1) (2 marks)

(ii) Use Lagrange multipliers to find the minimum and maximum of the function f(x, y) = (3x + y) subject to the constraint $x^2 + y^2 = 10$ (3 marks)

7. (i) Define Gradient. (1 marks)

(ii) What does it mean physically? (1 marks)

(iii) If
$$R = xi + yj + zk$$
 then find gradient of $\frac{1}{R}$. (3 marks)

- 8. Prove that
 - (i) $\nabla \times \nabla \phi = 0$ (2 marks)
 - (ii) $\nabla \cdot \nabla \times \vec{A} = 0$ (3 marks)

9. Consider an operator A represented by the following matrix:

$$A = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

- (i) Verify whether the operator is Hermitian. (1 marks)
- (ii) Verify whether the operator is Unitary. (1 marks)
- (iii What are the eigen values and eigen vectors of the operator? (3 marks)

10. Consider the matrix
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

- (i) Verify whether A is orthogonal. (2 marks)
- (ii) Find the eigenvalues of $X = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{pmatrix}$ (3 marks)

(ii) Solve the following: $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0, y(0) = 1$ (3 marks)

12. Solve the following:

$$m\frac{d^2x}{dy^2} + \alpha \frac{dy}{dx} + \beta x = k \cos(\omega x), \ y(0) = 0$$
(5 marks)

 $\rm CC~1$